解决方案
当前位置:首页 应用领域
激光通信
激光通信

基于LCOS设计的可调光学滤波器可实现任意光谱的波长滤波、光波复用/解复功能;可用于网络收发测试、DWDM等激光通信领域。

激光通信是一种利用激光传输信息的通信方式。

激光是一种新型光源,具有亮度高、方向性强、单色性好、相干性强等特征。

按传输媒质的不同,可分为大气激光通信和光纤通信。大气激光通信是利用大气作为传输媒质的激光通信。光纤通信是利用光纤传输光信号的通信方式。

激光通信的应用主要有以下几个方面:

1、地面间短距离通信;

2、短距离内传送传真和电视;

3、由于激光通信容量大,可作导弹靶场的数据传输和地面间的多路通信。

4、通过卫星全反射的全球通信和星际通信,以及水下潜艇间的通信。

大气激光通信可传输语言、文字、数据、图像等信息。

激光通信的优点是:

(1)通信容量大。在理论上,激光通信可同时传送1000万路电视节目和100亿路电话。

(2)保密性强。激光不仅方向性特强,而且可采用不可见光,因而不易被敌方所截获,保密性能好。

(3)结构轻便,设备经济。由于激光束发散角小,方向性好,激光通信所需的发射天线和接收天线都可做的很小,一般天线直径为几十厘米,重量不过几公斤,而功能类似的微波天线,重量则以几吨、十几吨计。

查看详细+
3D打印
3D打印

利用高分辨率空间光调制器,可以将二维图案一次性投射到光固化材料表面,相对于前者在保证了打印精度的同时也极大的提升了打印速度。

3D打印(3DP)即快速成型技术的一种,又称增材制造 ,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。

2019年1月14日,美国加州大学圣迭戈分校首次利用快速3D打印技术,制造出模仿神经系统结构的脊髓支架,成功帮助大鼠恢复了运动功能。

2020年5月5日,中国首飞成功的长征五号B运载火箭上,搭载着“3D打印机”。这是中国首次太空3D打印实验,也是国际上第一次在太空中开展连续纤维增强复合材料的3D打印实验。

查看详细+
4K/8K投影
4K/8K投影

LCOS投影仪是采用LCOS是一种新型的反射式microLCD投影技术。与穿透式LCD和DLP相比,LCOS具有利用光效率高、体积小、开口率高、制造技术较成熟等特点,它可以很容易的实现高分辨率4k/8k和充分的色彩表现。

投影指的是用一组光线将物体的形状投射到一个平面上去,称为“投影”。

在该平面上得到的图像,也称为“投影”。

投影可分为正投影和斜投影。

正投影即是投射线的中心线垂直于投影的平面,其投射中心线不垂直于投射平面的称为斜投影。

物体在灯泡发出的光照射下形成影子就是中心投影。

一种投影显示系统sRGB是微软公司与精工爱普生公司、三菱公司合作开发的,目的是建立一个可以满足计算机和投影显示需求的色彩管理标准,使得显示设备无须经过特别的色彩信息分析,就可以正确地表现出图象文件。

sRGB消了不同显示系统在色彩还原上原有的差异。

不同显示设备间的RGB色彩,自然会发生一些变化,因而经过不同的显示设备后就无法正确地再现色彩。

如今,随着以计算机为辅助的演示设备越来越成为市场发展的关键工具,正确的图象和色彩还原比以前变得尤为重要。

有了sRGB技术,用户无论使用CRT设备观看,或者通过适应sRGB标准的投影机投放观看,都可以确保得到统一的色彩。


查看详细+
AR/VR投影
AR/VR投影

AR/VR原理是用微型显示器把虚拟场景呈现出来,在增强现实中,将虚拟信息和真实世界叠加在在一起。空间光调制器具有尺寸小、功耗低、分辨率高、易于与真实世界的信息融合,成为AR/VR眼镜/头盔的主要技术方案。

增强现实(Augmented Reality,简称AR),增强现实技术也被称为扩增现实,AR增强现实技术是促使真实世界信息和虚拟世界信息内容之间综合在一起的较新的技术内容,其将原本在现实世界的空间范围中比较难以进行体验的实体信息在电脑等科学技术的基础上,实施模拟仿真处理,叠加将虚拟信息内容在真实世界中加以有效应用,并且在这一过程中能够被人类感官所感知,从而实现超越现实的感官体验。真实环境和虚拟物体之间重叠之后,能够在同一个画面以及空间中同时存在。

增强现实技术不仅能够有效体现出真实世界的内容,也能够促使虚拟的信息内容显示出来,这些细腻内容相互补充和叠加。在视觉化的增强现实中,用户需要在头盔显示器的基础上,促使真实世界能够和电脑图形之间重合在一起,在重合之后可以充分看到真实的世界围绕着它。增强现实技术中主要有多媒体和三维建模以及场景融合等新的技术和手段,增强现实所提供的信息内容和人类能够感知的信息内容之间存在着明显不同。

AR技术的起源,可追溯到Morton Heilig在20世纪五、六十年代所发明的Sensorama Stimulator。他是一名电影制作人兼发明家。他利用他的多年的电影拍摄经验设计出了叫Sensorama Stimulator的机器。

SensoramaStimulator同时使用了图像、声音、香味和震动,让人们感受在纽约的布鲁克林街道上骑着摩托车风驰电掣的场景。这个发明在当时非常超前。以此为契机,AR也展开了它的发展史。

由于AR技术的颠覆性和革命性,AR技术获得了大量了解。早在20世纪90年代,就有3D游戏上市,但由于当时的AR技术价格较高,其自身延迟较长,设备计算能力有限等缺陷,导致这些AR游戏产品以失败收尾,第一次AR热潮就此消退。到了2014年,Facebook以20亿美元收购Oculus后,类似的AR热再次袭来。在2015和2016两年间,AR领域共进行了225笔风险投资,投资额达到了35亿美元,原有的领域扩展到多个新领域,如城市规划、虚拟仿真教学、手术诊疗、文化遗产保护等。如今,AR、VR等沉浸式技术正在快速发展,一定程度上改变了消费者、企业与数字世界的互动方式。用户期望更大程度上从2D转移到沉浸感更强的3D,从3D获得新的体验,包括商业、体验店、机器人、虚拟助理、区域规划、监控等,人们从只使用语言功能升级到包含视觉在内的体验。而在这个发展过程中,AR将超越VR,更能满足用户的需求。


查看详细+
生物医学仪器
生物医学仪器

空间光调制器具有灵活的振幅或相位调控功能,通过对包含生物样品信息的信号光的调制,进行傅里叶空间频谱处理,样品的相位信息变化就能转变成图像的振幅/对比度变化,可增强图像对比度的,可应用于光学衬比显微技术方向的生物医学仪器。

生物医学仪器和工程是综合生物学,医学和工程学的理论和方法而发展起来的一门边缘学科,它的诞生大大促进了现代生物医学的发展,其中很大一部分与生物电子技术有关。特别是医学图像和处理系统,生物医学信号检测,医学临床监技术等方面。医学图像和处理系统包括对医学图像进行分析,识别,分割,解释,分类和压 缩等,以便把其中所含的生物信息提取出来。

查看详细+
自适应光学
自适应光学

自适应光学系统通常使用波前矫正器实现高精度光学相位补偿,液晶空间光调制器空间分辨率高、能耗低、体积小、易于控制、价格低廉,成为波前校正器主要发展方向。

自适应光学(Adaptive optics, AO)是补偿由大气湍流或其他因素造成的成像过程中波前畸变的有前景的技术。

中国科学院光电技术研究所饶长辉研究团队成功研制国内首套地表层自适应光学(Ground Layer Adaptive Optics, GLAO)试验系统,与云南天文台1米新真空太阳望远镜对接后,于2016年1月首次获得了太阳黑子和太阳米粒的大视场高分辨力自适应光学校正图像,标志着我国太阳自适应光学技术再次取得重大突破。

自适应光学(英语:Adaptive optics,AO)是一项使用可变形镜面矫正因大气抖动造成光波波前发生畸变,从而改进光学系统性能的技术。自适应光学的概念和原理早在1953年由海尔天文台的胡瑞斯·拜勃库克(Horace Babcock)提出的,但是超越了当时的技术水平所能达到的极限,只有美国军方在星球大战计划中秘密研发这项技术。冷战结束后,1991年5月,美国军方将自适应光学的研究资料解密,计算机和光学技术也足够发达,自适应光学技术才得以广泛应用。配备自适应光学系统的望远镜能够克服大气抖动对成像带来的影响,将空间分辨率显著提高大约一个数量级,达到或接近其理论上的衍射极限。第一台安装自适应光学系统的大型天文望远镜是欧洲南方天文台在智利建造的3。6米口径的新技术望远镜。越来越多的大型地面光学/红外望远镜都安装了这一系统,比如位于夏威夷莫纳克亚山的8米口径双子望远镜、3。6米口径的加拿大-法国-夏威夷望远镜、10米口径的凯克望远镜、8米口径的日本昴星团望远镜等等。自适应光学已经逐步成为各大天文台所广泛使用的技术,并为下一代更大口径的望远镜的建造开辟了道路。

自从天文望远镜诞生400年以来,它从小型手控的光学器材发展到由计算机控制的庞大复杂仪器。其间,有两个参数极其重要:望远镜的口径(聚光能力)和角分辨率(图像的清晰度)。对于一架在太空中使用的性能好的望远镜来说,分辨率直接与口径的倒数成正比。从遥远星球发出的平面波波前将被望远镜转换成更好的球面波波阵面从而成像。像的角分辨率只受到衍射的限制--我们可以称之为衍射极限。

实际上大气的影响和望远镜的质量问题都会扭曲球面波前,造成成像过程中的相位错误。即使是在好的观测地点,地面上可见光波段望远镜的角分辨率都无法超过10到20厘米口径的望远镜,这仅仅是因为大气湍流的缘故。对于一台口径四米的望远镜来说,大气湍流使其空间分辨率降低了一个数量级(与衍射极限相比),同时星像中心的清晰度降低了100多倍。这源于大气扰动造成的波前在时间和空间的不稳定--也是人类发送哈勃到太空进行观测的的主要原因--避免大气湍流的影响。此外,像质的好坏也受到工业技术问题以及由机械、温度和望远镜光学效应而引起的波前扭曲的影响。

查看详细+
激光加工
激光加工

空间光调制器能够实现灵活可控的光场分布,脉冲激光可以被调制成多焦点图案阵列,结合超快激光加工技术,实现“并行”加工,大大的提高加工效率和灵活性。

激光雕刻加工是激光系统常用的应用。根据激光束与材料相互作用的机理,大体可将激光加工分为激光热加工和光化学反应加工两类。
激光热加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光雕刻切割、表面改性、激光镭射打标、激光钻孔和微加工等;

光化学反应加工是指激光束照射到物体,借助高密度激光高能光子引发或控制光化学反应的加工过程。包括光化学沉积、立体光刻、激光雕刻刻蚀等。

原理

激光加工是利用光的能量经过透镜聚焦后在焦点上达到很高的能量密度,靠光热效应来加工的。 激光加工不需要工具、加工速度快、表面变形小,可加工各种材料。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。 某些具有亚稳态能级的物质,在外来光子的激发下会吸收光能,使处于高能级原子的数目大于低能级原子的数目——粒子数反转,若有一束光照射,光子的能量等于这两个能相对应的差,这时就会产生受激辐射,输出大量的光能。

特点

从全球激光产品的应用领域来看,材料加工行业仍是其主要的应用市场,占比为35。2%;通信行业排名第二,其所占比重为30。6%;另外,数据存储行业占据第三位,其所占比重为12.6%。

与传统加工技术相比,激光加工技术具有材料浪费少、在规模化生产中成本效应明显、对加工对象具有很强的适应性等优势特点。在欧洲,对汽车车壳与底座、飞机机翼以及航天器机身等特种材料的焊接,基本采用的是激光技术。

1、激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;

2、激光头与工件不接触,不存在加工工具磨损问题;

3、工件不受应力,不易污染;

4、可以对运动的工件或密封在玻璃壳内的材料加工;

5、激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;

6、激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度;

7、在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

优势

激光加工属于无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性及高熔点的材料。激光加工柔性大主要用于切割、表面处理、焊接、打标和打孔等。激光表面处理包括激光相变硬化、激光熔敷、激光表面合金化和激光表面熔凝等。

激光加工技术主要有以下独特的优点:

①使用激光加工,生产效率高,质量可靠,经济效益。

②可以通过透明介质对密闭容器内的工件进行各种加工;在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。

④可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性及高熔点的材料。

⑤激光束易于导向、聚焦实现作各方向变换,极易与数控系统配合、对复杂工件进行加工,因此它是一种极为灵活的加工方法。

⑥无接触加工,对工件无直接冲击,因此无机械变形,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。

⑦激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小,因此,其热影响区小,工件热变形小,后续加工量小。

⑧激光束的发散角可<1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至10kW量级,因而激光既适于精密微细加工,又适于大型材料加工。激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度。

激光加工技术已在众多领域得到广泛应用,随着激光加工技术、设备、工艺研究的不断深进,将具有更广阔的应用远景。由于加工过程中输入工件的热量小,所以热影响区和热变形小;加工效率高,易于实现自动化。

查看详细+
激光雷达
激光雷达

空间光调制器是一种大规模的相位控制阵列,与微波相控阵天线的工作原理类似,通过控制每个相干合成单元光束的相位,能对光束发射方向进行精准的控制,实现高精度的二维光学扫描,也能同时发出多个光束,对移动目标进行实时跟踪。基于空间光调制器的光学相控阵技术具有无机械惯性、高扫描精度以及高分辨率等特点,近年来成为激光雷达的研究热点。

激光雷达,是以发射激光束探测目标的位置、速度等特征量的雷达系统。

其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。
它由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。

LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称,另外也称Laser Radar 或LADAR(Laser Detection and Ranging)  。

用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统 、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。激光雷达采用脉冲或连续波2种工作方式,探测方法按照探测的原理不同可以分为米散射、瑞利散射、拉曼散射、布里渊散射、荧光、多普勒等激光雷达。

查看详细+
共 2 页 12下一页末页
服务电话服务电话17715160698
Top